Muscles. We have over 600 of them. They make up between 1/3 and 1/2 of our body weight, and along with connective tissue, they bind us together, hold us up,and help us move. And whether or not bodybuilding is your hobby, muscles need your constant attention because the way you treat them on a daily basis determines whether they will wither or grow. Say you're standing in front of a door,ready to pull it open. Your brain and muscles are perfectly poised to help you achieve this goal. First, your brain sends a signal to motor neurons inside your arm. When they receive this message,they fire, causing muscles to contract and relax, which pull on the bones in your armand generate the needed movement. The bigger the challenge becomes,the bigger the brain's signal grows, and the more motor units it rallies to help you achieve your task. But what if the door is made of solid iron? At this point, your arm muscles alone won't be able to generate enough tension to pull it open, so y...
Get link
Facebook
X
Pinterest
Email
Other Apps
Facts about Megalodon ?
Get link
Facebook
X
Pinterest
Email
Other Apps
-
About 8 million years ago, a little baleen whale was swimming in the warm coastal waters of Peru. It was only about 3 or 4 meters long, about the size of a Beluga whale, and while it filtered mouthfuls of plankton-rich water, it was unaware that just below it swam a predator. Like the great white sharks of our times,this predator likely hunted whales from below or behind, in case its prey was capable of echolocation.
It turns out that this little whale, known as Piscobalaena, didn’t have that ability, but for the hunter, the element of surprise was enough. It swam up for the attack, and that was thatfor Piscobalaena. We know who the predator was, because it lefta tooth in the whale’s body, which eventually fossilized. It usually goes by its species name, Megalodon,and it was the largest shark that ever lived. At up to 18 meters, it was almost three-quarters the size of a modern Blue whale. Its teeth were as big as your hand – or bigger. And its jaws were wide enough to swallow you whole. Megalodon lived all over the world, from theNetherlands to New Zealand.
And for more than 10 million years, it was at the top of its game as the oceans’ apex predator … until, 2.6 million years ago, when it went extinct. Yes, really – don’t let Hollywood convince you otherwise. I know you're smarter than that. Megalodon disappeared entirely from the fossil record, just as the Pliocene epoch gave way to the Pleistocene. And there’s also proof of its extinction in the composition of marine life that we find today -- especially in the kinds and sizes of whales that swim in our modern oceans. So, what happened to the largest shark in history? Well, it turns out that while Megalodon may have been the biggest shark that ever swam, it would eventually be defeated by the greatest. Megalodon was the biggest, scariest shark in a family of big, scary sharks. It belongs to the diverse order of sharks known as Lamniformes, which today includes sand tigers, goblins, threshers, and the GreatWhite.
And when Megalodon was first described in1835, scientists thought that its big, serrated, blade-like teeth looked so much like those of the great white that Megalodon was originally placed in the same family. But today, based on features around the base of its massive teeth, most experts think it was probably in a separate family whose members are all now extinct, called Otodontidae, also known as the Mega-Toothed sharks. Now, one of the oldest and smallest of the group of Megatooths that gave rise to Megalodon was a shark known as Otodus obliquus, which lived in the Early Eocene, nearly 20 million years before Megalodon appeared on the scene. Some scientists think Megalodon belonged to this same genus, Otodus, while others assign it to another genus of extinct sharks, calledCarcharocles. Either way, Megalodon was the largest of all the Mega Tooths, first showing up in the fossil record about 23 million years ago. So, how and why did it get so huge? Well, Megalodon’s massive size was linked to the size of its prey. And both were shaped by forces much bigger than themselves. These external forces began at the end of the Mesozoic, when plate tectonics caused the uplift of mountains in North America andAsia.
The weathering of these growing mountain ranges pumped massive amounts of nutrient-rich sediment into the oceans, increasing the productivity of ecosystems near the shore. And as the algae and plants grew, so did the preferred food group: marine mammals. Marine mammals like whales, dolphins, andseals all have pretty high fat contents, making them a nutritious, high-calorie snack for any predator that can catch them. And as the marine mammals grew over time,so did the sharks. Over the course of about 20 million years,marine mammals and the line of Megatooth sharks that led to Megalodon both doubled in size! And Megalodon in particular started to grow fast.
Fossils of newborn megalodon, found in places like Panama, show that they were about 2 to 3 meters long, half the size of a modern greatwhite shark, and about one and a half times as large as their ancestor Otodus obliquus! And these massive baby sharks grew like weeds. We know this because shark vertebrae showings of their growth, just like tree rings. And these rings show that Megalodon babies grew almost twice as quickly as Otodus obliquus, reaching their maximum length at around 25years old. So, getting bigger over time, and then getting bigger faster, probably helped Megalodon keep up in the ongoing size race with the marine mammals they hunted. And hunt it most certainly did. Its teeth have been found stuck in the ribs of many unidentified whale species, as well as the tiny Piscobalaena, and even in a pinniped about the size of a sea lion. So, size was a very useful adaptation for the giant sharks – until it wasn’t. Because 2.6 million years ago, Megalodon disappeared.
And there are a couple of potential reasons for this. For one thing, 2.6 million years ago marked the beginning of the Pleistocene, when cooler temperatures and long periods of glaciation began to set in -– also known as the Ice Ages. This change in temperature could have affectedMegalodon directly, or it could have impacted its food source. That’s because the change in climate led to a restructuring of how and where whales lived. As the climate shifted, more productive environments with more food began to take shape closer to the poles, so whales started to spend a lot more time there and became more migratory. So maybe the problem for Megalodon was that its prey started moving to where the water was colder -- too cold, perhaps, for Megalodon To follow. For a long time, scientists thought this might have been what did in the world’s biggest shark.
But in 2016, a group of researchers led byDr. Catalina Pimiento decided to test that hypothesis. Specifically, they tested the assumption thatMegalodon couldn’t live in cold water. Pimiento and her team used a climate forecasting model to recreate ocean temperatures during the Pliocene and Miocene, and compared those temperatures to where Megalodon had lived. They found that while the shark preferred water from about 12 to 27 degrees Celsius, its fossils were still found in places where the water was as cold as 1 degree! So Megalodon probably was okay with cold water. Which makes sense, because many large sharkstoday are mesothermic – they can keep their bodies a little warmer than the surrounding water temperature, which helps them stay active even in colder waters.
So, if changes to the whales’ movement and habitats wasn’t the problem then what was? Well, the disappearance of Megalodon seems to coincide with two big, important changes in the animal kingdom. The first was the appearance of new predators that Megalodon had to compete with. For example, starting around the middle of the Miocene, we find the giant sperm whale with the epic name of Livyatan melvillei, namedfor none other than the author of Moby Dick! But unlike the suction-feeding sperm whales of our times, Livyatan had short, powerful jaws. And its teeth were big, strong, and meant for biting into flesh. Also, at 17 meters long, Livyatan wasn't just snacking on squid. It was eating other whales. And it was only one of many species of carnivorous whales in the middle Miocene. In the Late Miocene, another adversary shows up in the fossil record -- the earliest ancestor of the Great White Shark, Carcharodon hubbelli. This shark was a direct competitor with Megalodon,as proven by its tooth marks that have been found in fossils of the same whale species that we knew Megalodon ate. Namely, that little Piscobalaena. Then, a few million years later, in the earlyPliocene, the first fossils appear of the modern great white, Carcharadon carcharias. Now, in addition to having to compete with newer, more nimble sharks like these, some of Megalodon’s most important prey -- namely,whales -- were on the decline.
Toward the end of the Pliocene, the number of whales dramatically decreased from about 60 whale species, to about 40. Many of these species were filter feeders,and fed on krill and other organisms, which in turn ate microscopic algae called diatoms. And starting around 3 million years ago, the oceans began to experience a serious drop in diatom diversity. It’s not 100% clear why this happened, but it might relate to changes in ocean circulation that took place when North and South Americafinally came together, and water could no longer circulate between the Pacific and theAtlantic. Regardless of the reason, fewer diatoms meant fewer krill, which in turn meant fewer whales. And with less food, Megalodon had to compete even harder with the smaller, faster great white shark. Being bigger is great, if it gives you the advantage of having access to a different food group. But when it no longer does, it just means you're bulkier and require more food to survive. Which is why, 2.6 million years ago, the very last of the Megalodon disappeared from the fossil record. And the absence of the Megalodon may have had a big impact on the world’s oceans. In the past couple million years, great whitesharks and Orcas have taken over the roles of apex predator, but these much smaller carnivores couldn't hunt the larger whales that Megalodon was likely able to eat.
For instance, we know that modern Great Whitesfrequently eat dolphins half their size, so it’s possible that the 18-meter Megalodonwas eating whales that were as big as 9 meters -- much too big for other predators to handle. And after Megalodon went extinct, the sizeof whales exploded. During the Pleistocene, the waters grew colder,and the new and improved productivity at the poles meant diatoms bounced back. And this newly productive environment, alongwith the absence of large predators, meant that whales were able to become twice as big as the biggest whales of the Pliocene. This is why the blue whale, the largest animal our planet has ever seen, appeared in the fossil record only recently - less than 2 million years ago. Without 18 meter sharks swimming around, the oceans could finally host 25 meter whales. So, Megalodon and its ancestors had a greatrun. Over 30 million years, they became larger in order to eat larger marine mammals. But when those mammals started to disappear,and when competition with Great White Sharks and other predators became too fierce, Megalodon didn’t make the evolutionary cut.
1)Bermuda triangle ÷ The Bermuda Triangle,also known as the Devil's Triangle, is located in the North Atlantic Ocean. The Bermuda triangle comes in between Florida, Bermuda and Puerto rico. And all these 3 places form a triangle shape on the ocean. It is called the Devil's Triangle because whenever any ship or aeroplane comes nearer to the Bermuda triangle it mysteriously disappears, no one knows what happened to those ships and aeroplanes. There are many unknown questions about Bermuda triangle like What happens with those ships and aeroplanes ? What happens with the people? Etc And also some people says it's due to the gravitational pull on the earth, which makes the ships and aeroplane disappeared. 2)Mariana Trench÷ Mariana Trench is the deepest part of the ocean and also the deepest location on Earth. It is 11,034 meters deep. And Mount Everest can easily fit in it because Mount Everes...
The brains consist of three parts.The forebrain, which controls all thoughts, senses, motor functions, emotions and hunger. The midbrain controls auditory and visual reflexes as well as awareness. The hindbrain controls coordination and analysis of senses. Brains have a similar texture to tofu. There are 100,000 miles of blood vessels within the brain. Enough to circle earth four times. The ancient Egyptians believed the brain's function was to produce snot. Though the brain only makes up 2% of the body's weight, it uses 20% of the body's energy. A person’s brain has 100 billion neurons.These cells are known as the gray matter which process information. Einstein’s brains have been preserved for study. It is split into 240 separate slides for viewing. 89.06 is the percentage of people who report normally writing with their right hand, 10.6% with their left and0.34% with either hand. More electrical impulses are generated in one day by a single human brai...
Comments
Post a Comment